HDAC3 negatively regulates spatial memory in a mouse model of Alzheimer's disease

نویسندگان

  • Xiaolei Zhu
  • Sulei Wang
  • Linjie Yu
  • Jiali Jin
  • Xing Ye
  • Yi Liu
  • Yun Xu
چکیده

The accumulation and deposition of beta-amyloid (Aβ) is a key neuropathological hallmark of Alzheimer's disease (AD). Histone deacetylases (HDACs) are promising therapeutic targets for the treatment of AD, while the specific HDAC isoforms associated with cognitive improvement are poorly understood. In this study, we investigate the role of HDAC3 in the pathogenesis of AD. Nuclear HDAC3 is significantly increased in the hippocampus of 6- and 9-month-old APPswe/PS1dE9 (APP/PS1) mice compared with that in age-matched wild-type C57BL/6 (B6) mice. Lentivirus -mediated inhibition or overexpression of HDAC3 was used in the hippocampus of APP/PS1 mice to investigate the role of HDAC3 in spatial memory, amyloid burden, dendritic spine density, glial activation and tau phosphorylation. Inhibition of HDAC3 in the hippocampus attenuates spatial memory deficits, as indicated in the Morris water maze test, and decreases amyloid plaque load and Aβ levels in the brains of APP/PS1 mice. Dendritic spine density is increased, while microglial activation is alleviated after HDAC3 inhibition in the hippocampus of 9-month-old APP/PS1 mice. Furthermore, HDAC3 overexpression in the hippocampus increases Aβ levels, activates microglia, and decreases dendritic spine density in 6-month-old APP/PS1 mice. In conclusion, our results indicate that HDAC3 negatively regulates spatial memory in APP/PS1 mice and HDAC3 inhibition might represent a potential therapy for the treatment of AD.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

بررسی تاثیر پروژسترون بر پراکسیداسیون لیپیدی و اختلال حافظه ناشی از مدل آلزایمر حاصل از تزریق موضعی استرپتوزوتوسین در رت

Introduction: Alzheimer’s disease is one of the most prevalent brain neurodegenerative diseases and the most common cognitive deficits are memory dysfunction and spatial perception impairment. Progesterone has a neorostroid action in hippocampal neurogenesis, synaptic stability and spatial learning and memory and has antioxidant effect. Since oxidative stress is involved in the pathogenes...

متن کامل

Effects of exercise on spatial memory deficits induced by nucleus basalis magnocellularis lesions

Introduction: Previous studies have shown that exercise enhances cognitive and functional capacities in patients with Alzheimer's disease (AD). In this study, we investigated the effect of long-term (60 days) and short- term (10 days) exercise on the spatial memory deficits in an animal model of AD. Methods: Fifty male rats were divided into 5 groups 1) intact, 2) sham, 3) sham-Alzheimer 4) ...

متن کامل

تأثیر تزریق داخل بطنی متفورمین بر یادگیری و حافظه فضایی موش‌های آلزایمری مدل استرپتوزوسین

Background and objective: Insulin and its receptor are located in the central nervous system where it regulates many important processes such as neural proliferation, apoptosis, synaptic transmission, neuronal survival, synaptic plasticity, learning and memory. Alzheimer's disease (AD) is characterized by the accumulation of extracellular amyloid-β (Aβ) plaques, and intracellular aggregation of...

متن کامل

Effect of the Xenograft Transplantation of Human Dental Pulp Stem Cells on Anxiety and Memory in Trimethyltin Induced-Alzheimer Disease Model

Background and Objectives: Alzheimer's disease (AD) is a neurodegenerative disease and the most common cause of dementia. The characteristics of this disease are amnesia, cognitive and verbal disorders, memory deficit, paranoia, depression, and anxiety. In this study, the alterations of cognitive-behavioral and nuclear factor kappa (NF-κ) factor, were investigated following the xenogenic transp...

متن کامل

Effect of Rheum Ribes Hydro-Alcoholic Extract on Memory Impairments in Rat Model of Alzheimer᾽s Disease

Some animal models have been used to study Alzheimer's disease (AD). AD is an irreversible progressive neurodegenerative disease and the most common cause of dementia. Animal studies have shown that there is a relation between decrease in cholinergic functions in the nucleus basalis of Meynert (NBM) and loss of learning capability and memory. The aim of this study was to investigate the effect ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017